Neurally Adjusted Ventilatory Assist nel neonato

Ventilare un neonato prematuro ricercando la migliore strategia di sincronizzazione rappresenta una sfida quotidiana in neonatologia. Il tempo inspiratorio particolarmente breve, i bassi volumi correnti, le elevate frequenze respiratorie e la presenza di perdite legate all’utilizzo di tubi non cuffiati e interfacce non invasive esclusivamente nasali comportano numerose difficoltà nella sincronizzazione, tanto da limitare l’utilizzo di ventilazioni sincronizzate in quest’ambito.

Il prevalente utilizzo di modalità di ventilazione non sincronizzate comporta, naturalmente, un alto tasso di eventi asincroni, con un’incidenza di asincronie paziente – ventilatore che variano, in neonatologia, dal 45% al 68% 1,2. Un alto tasso di asincronie comporta, per il neonato pretermine, un’aumentata esposizione a barotrauma, rischio di pneumotorace ma anche emorragia intraventricolare3 ed un enorme dispendio energetico determinato dall’esigenza di “combattere” il ventilatore; crescenti evidenze sottolineano come il discomfort derivante dalle procedure e dai trattamenti, e tra questi anche la ventilazione meccanica, possano impattare negativamente sugli outcome neurologici a breve e lungo termine del neonato4,5.

Neurally Adjusted Ventilatory Assist (NAVA) è un’innovativa modalità di ventilazione proporzionale che sfrutta l’attività elettrica diaframmatica per sincronizzare il supporto della macchina al respiro del paziente istante per istante. A questa peculiare caratteristica definente di NAVA, si integra la modulazione della ventilazione sulla base dei riflessi protettivi polmonari, che intervengono regolando l’attività diaframmatica sulla base del grado di stiramento polmonare, favorendo così una ventilazione personalizzata e meno lesiva per il polmone ed il diaframma. Questa modalità rappresenta una potenziale soluzione alla difficoltà di sincronizzazione nella ventilazione neonatale.  

Continua a leggere

Quale livello di PS impostare

A cura di Enrico Bulleri

Gli effetti negativi e positivi di una pressione di supporto (PS) “alta” o “bassa” sono descritti in larga misura in letteratura [1-5]. Ad esempio, elevati livelli di supporto possono indurre effetti dannosi sul paziente ventilato: iperventilazione, iperinflazione che può causare sforzi inefficaci, frequente, associazione all’autociclaggio, frammentazione del sonno, disfunzione diaframmatica e apnea. Tuttavia, il carico di lavoro che induce affaticamento dei muscoli respiratori comporta la necessaria scelta di ridurre/attenuare lo sforzo attraverso impostazioni caratterizzate da elevato supporto del ventilatore.

Un supporto basso, di contro, può esporre i pazienti a: eccessivo affaticamento, ipoventilazione, eccessivo sforzo inspiratorio, intolleranza alla ventilazione non invasiva. Queste conseguenze, di fatto, vanificano il trattamento ventilatorio, tuttavia, la rimozione progressiva del PS è fondamentale durante lo svezzamento.

Si intuisce facilmente che la pressione di supporto, alta o bassa che sia, non è dannosa o curativa a priori, ma dipende dalle caratteristiche cliniche dell’assistito.

Una delle domande frequenti (a cui fatico dare una risposta semplice) è “quale livello di PS imposto?”. La difficoltà nella risposta deriva dalla consapevolezza che non è possibile standardizzare la PS e illudersi che questa possa andare bene per tutti. Ciò che per un paziente può essere considerato un supporto adeguato non è scontato, ovviamente, che lo sia anche per il vicino di letto. L’unica risposta sensata e sicura che si può dare a questa domanda è: “dipende principalmente dall’obiettivo clinico che vogliamo raggiungere (far riposare, far lavorare più intensamente o far mantenere uno sforzo respiratorio normale) e dalle caratteristiche meccaniche del sistema respiratorio con cui ci stiamo confrontando”.

Quindi, approfitto di questo post per presentare velocemente le variabili in gioco durante l’impostazione della PS, introducendo così un grosso capitolo che vedrà uno sviluppo futuro attraverso casi clinici mirati.

Partiamo!

Continua a leggere

Mechanical Power

È morto Gosaku Ota, disegnatore di Goldrake

La genesi o il peggioramento del VILI rappresenta il risultato indesiderato di una complessa interazione tra forze meccaniche che agiscono sulle strutture polmonari, dipendendo certamente dalle impostazioni del ventilatore, ma anche dalle caratteristiche dell’apparato respiratorio e dall’interazione paziente-ventilatore. L’energia meccanica spesa dal ventilatore o dai muscoli respiratori per espandere i polmoni dalla capacità funzionale residua potrebbe indurre sia un danno diretto alla membrana capillare e alla matrice extracellulare alveolare, sia la meccano-trasduzione (ovvero la conversione di uno stimolo meccanico in segnali biochimici e molecolari intracellulari).

Continua a leggere

Patient Self-Inflicted Lung Injury (P-SILI) part 1

japanese-ninja-concept-harakiri-260nw-1221491080

I deal with a complex and recent subject that is of great importance in monitoring patients afflicted with ARDS: the Patient Self-Inflicted Lung Injury (P-SILI).

The objectives of this piece are divided into two parts:

  1. To define the P-SILI.
  2. Bedside monitoring of P-SILI (which we will discuss in the second part of this report)
Continua a leggere

How to monitor inspiratory effort

Quantifying inspiratory effort can be useful in many aspects of assisting a person that is undergoing mechanical ventilation. For example, it represents the first step in understanding whether the level of pressure support set in the ventilator is adequate for the clinical objective or the importance of this data in the early detection of Patient Self Inflicted Lung Injury (P-SILI).

Continua a leggere