ARDS: davvero 6 mL/kg vanno bene per tutti?

A cura di
Enrico Bulleri

La scelta del volume corrente (VT) durante la ventilazione meccanica nei pazienti con sindrome da distress respiratorio acuto (ARDS) rappresenta un aspetto cruciale della pratica clinica, con l’obiettivo primario di ridurre il rischio di ventilator-induced lung injury (VILI) e migliorare gli esiti clinici.

Lo studio ARDSNet ha introdotto e consolidato il concetto di ventilazione protettiva, basata su un VT di 6 mL/kg di peso corporeo Predetto (PBW) e una pressione di plateau (Pplat) ≤ 30 cmH₂O. Rispetto a strategie con volumi e pressioni più elevati, questo approccio ha dimostrato di ridurre significativamente la mortalità e prevenire il VILI [1]. Tuttavia, le linee guida ATS/ESICM/SCCM raccomandano un intervallo di VT compreso tra 4 e 8 mL/kg PBW, riflettendo sia la variabilità della compliance del sistema respiratorio (Crs) nei pazienti con ARDS sia la complessità dei quadri clinici [2]. Ne deriva che la scelta del VT non può basarsi esclusivamente su un valore fisso.

Continua a leggere: ARDS: davvero 6 mL/kg vanno bene per tutti?

Determinare quale VT utilizzare (tra 4 e 8 mL/kg) è molto semplice, ma è importante comprendere la relazione tra compliance e driving pressure (DP).

La compliance rappresenta la distensibilità del sistema respiratorio e nei pazienti con ARDS è correlata alla quantità di alveoli ventilabili: più bassa è la compliance, minore sarà il volume polmonare disponibile per la ventilazione. [3]

La driving pressure quantifica la distensione alveolare indotta dal VT e, di conseguenza, il rischio di VILI: valori > 14 cmH₂O sono associati a sovradistensione e a peggiori esiti clinici [4,5]. Al letto del paziente, la DP si misura come differenza tra Pplat (pressione alveolare a fine inspirazione) e P0 (pressione alveolare a fine espirazione) (IMMAGINE 1).

Dal punto di vista fisiologico (DP = VT / Crs) Driving pressure e Compliance sono inversamente proporzionali: a parità di volume, minore è la compliance, maggiore sarà la pressione generata negli alveoli dal volume, ovvero la DP.

In altre parole, una DP elevata indica che il VT impostato è troppo grande rispetto allo spazio polmonare disponibile.

Immagine 1: misure di meccanica respiratoria per ottenere pressione alveolare a fine espirazione o PEEP totale (P0) e pressione alveolare a fine inspirazione o pressione di plateau (Pplat). Immagine tratta da Bulleri E, Fusi C. Guida al monitoraggio della ventilazione meccanica. Como: TriggerLab; 2021

Ad esempio:

  • In un paziente di 70 kg con compliance di 20 mL/cmH₂O, un VT di 6 mL/kg (420 ml) genera una DP di 21 cmH₂O (Immagine 1), un valore eccessivo secondo le evidenze attuali. In tali condizioni (quadro molto grave) se non sopraggiunge una grave acidosi respiratoria (pH < 7.15), il VT dovrebbe essere ridotto a 4 mL/kg (280 ml), per ottenere una DP 14 cmH₂O.
  • Se, invece, lo stesso paziente avesse una compliance di 40 mL/cmH₂O, un VT di 6–7 mL/kg produrrebbe una DP di 10–12 cmH₂O, consentendogli di rimanere entro i limiti di sicurezza.

Nei casi particolarmente gravi di ARDS, come nell’esempio sopra riportato, in cui il rischio di VILI è concreto, oppure quando vi è il sospetto che la bassa compliance sia dovuta in parte significativa alla gabbia toracica (ad esempio in presenza di obesità grave, versamenti pleurici rilevanti o rigidità della parete toracica), può essere preso in considerazione l’uso del palloncino esofageo per la stima della pressione pleurica. Questo monitoraggio consente di distinguere la quota di pressione applicata al polmone da quella applicata alla parete toracica, permettendo così di ottimizzare VT e PEEP [6,7].

Un’altra importante opzione terapeutica nei casi di ARDS grave è il supporto extracorporeo con ECMO (Extracorporeal Membrane Oxygenation), indicato quando le strategie di ventilazione protettiva non consentono di garantire un’adeguata ossigenazione e ventilazione senza causare ulteriori danni polmonari [8].

Lasciando la discussione di questi sistemi avanzati a post futuri, ricordiamo per ora che l’utilizzo di un VT fisso (ad esempio 6 mL/kg) può risultare eccessivo nei polmoni con bassa compliance, determinando sovradistensione e aumentando il rischio di VILI. L’impiego della DP, tenendo conto della compliance individuale, consente un approccio più personalizzato: modulando il VT per mantenere la DP entro limiti di sicurezza, si garantisce una protezione alveolare più efficace. In sostanza, la DP rappresenta un “limite di sicurezza” dinamico che guida la ventilazione, adattando il VT alle dimensioni del polmone pur rimanendo all’interno dei range raccomandati (4-8 mL/kg).

In sintesi:

  • Il range 4–8 mL/kg PBW rappresenta una raccomandazione standard per proteggere il polmone dal danno meccanico.
  • impostare 6 mL/kg è un ottimo inizio, ma non basta, si deve valutare la DP.
  • La DP consente di personalizzare la scelta del VT in funzione della compliance del sistema respiratorio.
  • L’obiettivo è impostare un VT all’interno di questo intervallo che mantenga una DP < 15 cmH₂O.
  • Questo approccio è più mirato e sicuro rispetto all’applicazione di un VT standardizzato.

Reference

  1. Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801.
  2. Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–1263. DOI: 10.1164/rccm.201703-0548ST.
  3. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005 Jun;31(6):776-84. doi: 10.1007/s00134-005-2627-z. Epub 2005 Apr 6. PMID: 15812622.
  4. Amato MBP, Meade MO, Slutsky AS, et al. Driving Pressure and Survival in the Acute Respiratory Distress Syndrome. N Engl J Med. 2015;372(8):747-755. DOI:10.1056/NEJMsa1410639.
  5. Xie J, Jin F, Pan C, Liu S, Liu L, Xu J, Yang Y, Qiu H. The effects of low tidal ventilation on lung strain correlate with respiratory system compliance. Crit Care. 2017 Feb 3;21(1):23. doi: 10.1186/s13054-017-1600-x. PMID: 28159013; PMCID: PMC5291981.
  6. Brochard L, Slutsky A, Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am J Respir Crit Care Med. 2017;195(4):438-442. DOI:10.1164/rccm.201606-1174CP.
  7. Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095‑2104.
  8. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. New England Journal of Medicine. 2018 May 24;378(21):1965-1975. doi: 10.1056/NEJMoa1800385.

Capnografia Volumetrica: Monitoraggio Avanzato della CO₂

A cura di Francesco Baiguera

Quando si parla di capnografia, si fa tradizionalmente riferimento a un monitoraggio che misura la concentrazione massima di CO₂ espirata, atto respiratorio per atto respiratorio, attraverso sensori dedicati. Probabilmente, ciò che davvero contraddistingue questo parametro non è il dato in sé, ma la sua rappresentazione grafica.

Infatti, come spesso accade in un paziente critico, l’interpretazione e l’analisi delle forme d’onda esprimono un bagaglio di informazioni che superano di gran lunga il dato numerico (pensiamo, ad esempio, al monitoraggio pressorio cruento, alla pulsossimetria e alle curve ventilatorie).

Continua a leggere

Aerosol terapia durante ventilazione meccanica. Parte 2

A cura di Alice Galesi

Nella prima parte dell’articolo, (clicca qui per il rimando alla parte 1), sono stati descritti i sistemi di nebulizzazione. Oggi, si presentano i fattori relativi al ventilatore e al circuito del ventilatore per capire come questi influenzano l’erogazione di aerosol durante la ventilazione meccanica.  

Continua a leggere

Aerosol terapia durante ventilazione meccanica. Parte 1

A cura di Alice Galesi

Background

La somministrazione di farmaci aerosolizzati è comunemente utilizzata per il trattamento di malattie polmonari [1], (ad esempio, asma, disturbi polmonari ostruttivi, fibrosi cistica, ipertensione arteriosa polmonare, malattia polmonare infettiva) [2]. L’uso dell’aerosolterapia durante la ventilazione meccanica è frequente per la somministrazione di broncodilatatori e steroidi nella broncopneumopatia ostruttiva e meno frequente per la somministrazione di antibiotici nella polmonite associata al ventilatore e nelle infezioni tracheobronchiali in pazienti con fibrosi cistica [1]. L’implementazione ottimale della terapia inalatoria nel paziente ventilato risulta complessa a causa di diversi dispositivi di aerosolizzazione, impostazioni ventilatorie, molecole e indicazioni terapeutiche [1,3]. La somministrazione di aerosol durante ventilazione meccanica è studiata da più di 30 anni, eppure non è stato individuato nessun metodo standard per l’erogazione [4]. Inoltre, da una survey internazionale emerge che le conoscenze scientifiche sembrano essere applicate raramente e si riportano anche delle pratiche potenzialmente pericolose [1]. I problemi legati all’aerosolterapia possono essere affrontati attraverso programmi educativi e di ricerca centrati sulla diffusione delle conoscenze facilmente attuabili nella pratica clinica [1].

Continua a leggere

Adaptive Support Ventilation (ASV)

Dopo un po’ di tempo (si chiede perdono) propongo un post che tratta una ventilazione particolare denominata ASV (Adaptive Support Ventilation). Si tratta di una modalità complessa e che necessita di un tempo adeguato per essere digerita.

ASV è un’avanzata closed loop dual control inter breath-mode. Nelle ventilazioni closed loop control viene generato un feedback positivo o negativo in grado di indurre variazioni nell’erogazione della ventilazione, in altre parole l’uscita del gas viene misurata fornendo un segnale di feedback che viene confrontato con il valore di ingresso. 

Continua a leggere

La pressione esofagea: posizionamento e verifica

Per un monitoraggio accurato della meccanica respiratoria e poter fornire, all’occasione, un trattamento ottimale dell’insufficienza respiratoria, è necessaria una valutazione dettagliata delle pressioni che agiscono all’interno del sistema respiratorio. La stima della pressione pleurica (Ppl) rappresenta una delle tecniche disponibili per comprendere, definire e valutare individualmente i meccanismi patologici dell’insufficienza respiratoria, per settare il ventilatore nei pazienti con danno polmonare acuto, per titolare il supporto farmacologico, per ottimizzare l’interazione paziente ventilatore e seguire il decorso clinico del paziente [1-4]. Tuttavia, il monitoraggio della Ppl è raramente utilizzato in ambito clinico; piuttosto, rimane ampiamente visto come uno strumento di ricerca. Ciò è in parte dovuto a problemi tecnici come il corretto posizionamento di un catetere esofageo al fine di ottenere misurazioni accurate [5].

In questo post cercherò di essere pragmatico e andremo a vedere come misurare la Ppl. Continua a leggere

RISE TIME

FOR ENGLISH VERSION CLICK HERE

Tra le diverse impostazioni che il ventilatore richiede, il rise time è tra quelle che solitamente non figura nel main menù. Basta questo per ignorarlo? Credo proprio di no e vediamo il perché.

Il Rise Time o tempo di salita, o ancora rampa, è un’impostazione presente su tutte le ventilazioni controllate, assistite e assistite/controllate. Rappresenta il tempo impiegato dalla curva che “comanda” la ventilazione (variabile indipendente) per passare da zero al proprio valore massimo. Continua a leggere

La costante di tempo del sistema respiratorio (τ)

tempovola

For english version click here: The Time Constant of The Respiratory System

Il post di oggi si pone l’obiettivo di far comprendere un concetto ostico della ventilazione meccanica: la costante di tempo. Nel post precedente è stato introdotta la PCV, una ventilazione pressometrica controllata che ha come obiettivo il controllo e l’applicazione di una pressione positiva costante. Da qui nasce lo spunto per un approfondimento che crediamo sicuramente utile da un punto di vista teorico, ma che presenta aspetti “pratici” di assoluta rilevanza.

Cos’è la costante di tempo? Continua a leggere

Pressure Controlled Ventilation (PCV)

Inizio questo post chiedendovi di osservare la figura 1 (qui sotto) e provare a riconoscere la modalità di ventilazione in corso, un piccolo esercizio prima di proseguire con la lettura del post.

pcv
Figura 1

Si tratta di una ventilazione a pressione controllata. Se non sei riuscito a riconoscerla non preoccuparti, puoi fare un piccolo passo indietro e leggere il post del 15/02/2016.

Faccio comunque un brevissimo ripasso per i colleghi che seguono triggerlab da poco tempo e ricordiamo che la variabile controllata dal ventilatore è chiamata variabile indipendente (indipendente dal paziente). È facilmente riconoscibile sul monitor perché assume una forma quadra e dipende unicamente dal setting impostato. La variabile che invece dipende dal paziente si definisce variabile dipendente ed è correlata alle caratteristiche meccaniche del sistema toraco-polmonare e all’eventuale attività respiratoria spontanea, ovvero dipende dall’equazione di moto dell’apparato respiratorio.

Suddividendo le ventilazioni in base alla variabile indipendente, (quella controllata dal ventilatore), otteniamo due gruppi (figura 2):

  • le ventilazioni flussometriche (o volumetriche), dove il controllo del ventilatore è applicato al flusso, che avrà forma quadra.
  • le ventilazioni pressometriche, dove il controllo è applicato alla pressione (PAW), che avrà forma quadra.

img1 post 5
Figura 2

Oggi parleremo della prima tra le ventilazioni pressometriche, ovvero la ventilazione a pressione controllata (PCV). Possiamo definire sinteticamente questa modalità come una controllata pressometrica “pura”. Questo significa che: Continua a leggere

Modalità di ventilazione meccanica: Volume Controlled Ventilation (parte 1)

Negli ultimi post abbiamo trattato tematiche e monitoraggi piuttosto complessi. Oggi, invece, parleremo di un argomento che molti di voi conoscono bene, ovvero di una delle più comuni modalità di ventilazione meccanica: la ventilazione a volume controllato (VCV) con flusso costante. Continua a leggere

Cos’è il trigger?!

In questo post proverò a rispondere a due domande piuttosto frequenti: cos’è il trigger? Quanti tipi di trigger esistono?

Il trigger (= grilletto) rappresenta un sistema di comunicazione tra paziente e ventilatore, è quel segnale che se viene rilevato dal ventilatore dà inizio alla fase inspiratoria o alla fase espiratoria. È quindi lo strumento utile a sincronizzare il ciclaggio del ventilatore alle richieste del paziente. Il trigger inspiratorio è il segnale che dà inizio alla fase inspiratoria mentre quello espiratorio dà inizio alla fase espiratoria.

Tipi di trigger:

  • trigger a tempo anche chiamato tempo di ciclo respiratorio (sia inspiratorio che espiratorio);
  • trigger a pressione (solo inspiratorio);
  • trigger a flusso (solo inspiratorio);
  • trigger neurale (sia inspiratorio che espiratorio);
  • “ciclo off” anche chiamato % picco di flusso  (solo espiratorio).

Continua a leggere